UASB厌氧反应器
您当前的位置 : 首 页 > 企业分站

辽源定制第三代厌氧反应器制造商

2022-03-22
辽源定制第三代厌氧反应器制造商

三相分离器主要安装在UASB、IC等厌氧反应器中,是厌氧反应器的核心组成部分,三相分离器直接影响着厌氧反应器的气、液、固的分离效果,可用于高浓度废水处理工程,如养殖污水、屠宰废水、制药废水、化工废水、食品废水等高浓度有机废水。三相分离器工作原理三相分离器收集反应室产生的沼气,使分离器内的悬浮物有效沉降。气、液、固三相流在分离器中分步进行分离。首先含沼气的混合液在上升的过程中随着气泡合并密度降低,不断向上流动,在气体释放区上升到液面,气体释放到气室中。气体释放后的液体通过导流区,进入沉降区,沉降区的结构如同沉淀池,混合液从两边进入,上清液由中间集水槽排出,沉降浓缩后的污泥密度大于分离器下部含有气体的混合液的密度,由污泥回流缝流回厌氧生物反应区,维持反应器中高生物浓度。三相分离器优化针对传统钢制三相分离器腐蚀严重,防腐措施收效甚微的现状。公司对三相分离器材料进行了革命,摒弃了传统的金属材料。开发出了耐腐蚀的非金属工程塑料三相分离器,彻底解决了腐蚀问题。

辽源定制第三代厌氧反应器制造商

经过调节pH和温度的废水首先进入反应器底部的混合区,并与来自外循环回流的泥水混合液充分混合后进入颗粒污泥膨胀床区进行COD生化降解,此处的COD容积负荷很高,大部分进水COD在此处被降解,产生大量沼气。由于沼气气泡形成过程中对液体做的膨胀功产生了气提的作用,使得沼气、污泥和水的混合物上升,经过填料区的降解后,混合液至反应器顶部的三相分离器,沼气在该处与泥水分离后并被导出处理系统。泥水混合物则沿挡泥板下降至反应器底部的混合区,并于进水充分混合后再次进入污泥膨胀床区,形成所谓内循环。根据不同的进水COD负荷和反应器的不同构造,外循环回流量可达进水流量的0.5-10倍。经膨胀床处理后的废水除一部分参与循环外,其余污水继续上升,污水进入填料区进行剩余COD降解与产沼气过程,提高和保证了出水水质。由于大部分COD已经被降解,所以填料区的COD负荷较低,产气量也较小。该处产生的沼气也是由三相分离器收集,通过集气管导出处理系统。经过填料区处理后的废水经三相分离器作用后,上清液经出水区排走,颗粒污泥则返回污泥床。

辽源定制第三代厌氧反应器制造商

废水厌氧生物处理是环境工程与能源工程中的一项重要技术,是有机废水强有力的处理方法之一,过去,它多用于城市污水厂的污泥、有机废料及其部分高浓度有机废水的处理,在建筑物形式上主要采用普辽源定制第三代厌氧反应器通消化池,由于存在水力停留时间长、有机负荷低等缺点,较长时间限制了它在废水处理中的应用,20世纪70年代以来,世界能源短缺日益突出,能生产能源的废水厌氧技术受到重视,研究与实践不断深入,开发了各种新型工艺与设备,大幅度地提高了厌氧反应器内活性污泥的持有量,使处理时间大大缩短,效率提高。● 应用范围广● 能耗低● 负荷高● 剩余污泥量少● 氮、磷营养需要量较少● 厌氧处理过程有一定杀菌作用,可以杀定制第三代厌氧反应器制造商死废水与污水中的寄生虫、病毒等● 厌氧活性污泥可以长期储存,厌氧反应器可以季节性或间歇性运转。三个方面的缺点:● 厌氧微生物增殖缓慢,因而厌氧设备启动和处理时间比好氧设备大● 出水往往需要进一步处理,故一般在厌氧处理后串联好氧处理● 厌氧处理系统操作控制因素较为复杂

辽源定制第三代厌氧反应器制造商

一般来说,对于以产甲烷为主要目的的厌氧过程要求pH值在6.5~8.0之间,废水碱度偏低或运行负荷过高时,会引起反应器内挥发酸积累,导致产甲烷菌活力丧失而产酸菌大量繁殖,持续过久时,会导致产甲烷菌活力丧失殆尽而产乙酸菌大量繁殖,引起反应器系统的“酸化”。严重酸化发生后,反应器难以恢复至原有状态。厌氧消化作用失去平衡时会显示出如下“症状”:①沼气产量下降;②沼气中甲烷含量降低;③消化液VFA增高;④有机物去除率下降;⑤消化液pH值下降;⑥碳酸盐碱度与总碱度之间的差值明显增加;⑦洗出的颗粒污泥颜色变浅没有光泽;⑧反应器出水产生明显异味;⑨ORP(氧化还原电位)值上升等。1、厌氧反应器酸化的原因厌氧反应器超负荷运行我们都知道,在运行厌氧反应器的各项工艺控制条件中,污泥负荷是一个非常重要的控制参数。污泥负荷是指单位时间内施加给单位质量厌氧污泥的有机物的量,以kgSCOD/kgVS.d表示。对于某种废水,厌氧污泥具有一个最大的限制值,当运行的负荷超过该最大限制值,则意味着超负荷运行。虽然该限制值从污泥负荷的概念上理解是针对整个厌氧污泥,实际上真正的对象是针对厌氧污泥中的产甲烷菌。超负荷运行,实际上就是负荷量超过了厌氧污泥中产甲烷菌的产甲烷能力,而此时的负荷量往往并没有超过厌氧污泥的水解酸化能力。所以就出现了反应器的VFA开始累积,浓度不断上升,出水pH值降低,去除效率下降这种污泥酸化现象的发生。所以,了解厌氧反应器的污泥总量,并以此来维持合理的运行负荷,是预防厌氧反应器出现酸化的重要手段之一。2、pH值、温度等运行控制条件出现严重偏差由于厌氧污泥中产甲烷菌对其生存条件的要求比水解酸化菌苛刻的多,所以当反应器的pH值或温度的控制范围出现很大的偏差,就会使产甲烷菌的产甲烷能力受到严重影响,而水解酸化菌所受到的影响却远远小于产甲烷菌,其结果同样会导致厌氧反应器发生酸化现象。

辽源定制第三代厌氧反应器制造商

厌氧颗粒污泥分为淀粉、淀粉糖、柠檬酸、酒精、造纸等行业高浓度污水处理系统中的高负荷厌氧反应器(EGSB、IC)生产出的新鲜颗粒污泥。厌氧反应器的容积负荷、上升流速和去除率均分别高于20kgCOD/(m3˙d),5m/h和90%。作为接种污泥可用于淀粉、淀粉糖、柠檬酸、酒精、啤酒、造纸、蛋白、食品、味精等行业的污水处理系统中高负荷厌氧反应器(IC、EGSB、UASB等)的启动运行。培养颗粒污泥需考虑的因素基质培养颗粒污泥首先对基质有一定的要求,一般的,在培养颗粒污泥的基质中COD:N:P=110~200:5:1。而有机废液的基质可分为偏碳水化合物类和偏蛋白质类。为了能顺利培养出颗粒污泥,对于偏碳水化合物类的污水需要添加N和P。而对于偏蛋白质类的污水需要添加碳源(如葡萄糖等)。温度废水中的厌氧处理主要依靠微生物的生命活动来达到处理的目的,不同微生物的生长需要不同的温度范围。温度稍有差别,就可在两类主要种群之间造成不平衡。颗粒污泥在低温(15~25℃)、中温(30~40℃)和高温(50~60℃)都有过成功的经验。一般的,高温较中温的培养时间短,但由于高温下NH3与某些化合物混合毒性会增加,因而导致其应用上受一定的限制;中温一般控制在35℃左右,在其它条件适当的情况下,经1~3个月可成功的培养出颗粒污泥;低温下培养颗粒污泥的研究较少。PH值反应器内pH值范围应控制在产甲烷菌最适的范围内(6.8-7.2)。由于不同性质的废水有不同的pH值,为了保证反应器内pH值的稳定,防止酸积累而产生的对产甲烷菌的抑制,可采用向废水中添加化学药品如NaHCO3、Na2CO3、Ca(OH)2等物质。

标签