UASB厌氧反应器
您当前的位置 : 首 页 > 企业分站

重庆定制芬顿流化床制造商

2021-11-18
重庆定制芬顿流化床制造商

一、三相分离器结构及工作原理 1、三相分离器的工艺流程 所有来油经游离水三项分离器分离再添加破乳剂进入换热器加热升温至70~75℃然后进入高效三相分离器进行分离,分离器压力控制在0.15~0.20Mpa,油液面控制在80~100cm、水液面控制在100~120cm,除油器进出口压差控制在0.2Mpa,处理合格后的原油含水率控制在2%重庆定制芬顿流化床左右经稳定塔闪蒸稳定后进入原油储罐,待含水小于0.8%后外输至管道。 2、三相分离器工作原理 各采油队来液由分离器进液管进入进液舱,容积增大,流速降低,缓冲降压,气体随压力的降低自然逸出上浮,在进液舱油、气、水靠比重差进行初步分离。分离后的水从底部通道进入沉降室。经过分离的液体经过波纹板时,由于接触面积增加,不锈钢波纹板又具有亲水憎油的特性,再进行油、气、水的分离。随后进入沉降室,靠油水比重差进行分离;通过加热使液体温度增加,增加油水分子碰撞机会,加大了油水比重差;小油滴和小水滴碰撞机会多聚结为大油滴和大水滴,加速油水分离速度;油上浮、水下沉实现油、水进一步分离;油、气和水通过出口管线排出。 2.1重力沉降分离 分离器正常工作时,液面要求控制在1/2~2/3之间。在分离器的下部分是油水分离区。经过一定的沉降时间,利用油和水的比重差实现分离。 2.2 离心分离 油井生产出来的油气混合物在井口剩余压力的作用下,从油气分离器进液管喷到碟形板上使液体和气体,在离心力的作用下气体向上,而液体(混合)比重大向下沉降在斜板上,向下流动时,还有一部分气体向气出口方向流去,当气体流到削泡器处,需改变气体的流动方向,气体比重小,在气体中还有一部分大于100微米的液珠与消泡器碰撞掉下沉降到液面上,同时液面上的油泡碰撞在削泡器,使气体向上流动,完成了离心的初步气液分离 2.3碰撞分离 当离心分离出来定制芬顿流化床制造商的气体进入分离器上面除雾器,气体被迫绕流,由于油雾的密度大,在气体流速加快时,雾状液体惯性力增大,不能完全的随气流改变方向,而除雾器网状厚度300mm截面孔隙只有0.3mm小孔道,雾滴随气流提高速度,获得惯性能量,气体在除雾器中不断的改变方向,反复改变速度,就连续造成雾滴与结构表面碰撞并吸附在除雾器网上。吸附在除雾器网上油雾逐渐累起来,由大变小,沿结构垂直面流下,从而完成了碰撞分离。

重庆定制芬顿流化床制造商

1、厌氧反应器内出现泡沫、化学沉淀等不良现象的原因是什么? 厌氧反应器中有时会产生大量泡沫,泡沫呈半液半固状,严重时可充满气相空间并带入沼气管道,导致沼气系统的运行困难。 产生泡沫的主要原因是厌氧系统运行不稳定,因为泡沫主要是由于CO2产量太大形成的,当反应器内温度波动或负荷发生突变等情况发生时,均可导致系统运行的不稳定和CO2的产量增加,进而导致泡沫的产生。如果将运行不稳定因素及时排除,泡沫现象一般也会随之消失。在厌氧污泥培养初期,由于CO2产量大而甲烷产量少,也会出现泡沫,随着甲烷菌的培养成熟,CO2产量减少,泡沫一般也会逐渐消失。进水中含有蛋白质是产生泡沫的一个原因,而微生物本身新陈代谢过程中产生的一些中间产物也会降低水的表面张力而生成气泡。厌氧生物处理过程中大量产气会产生类似好氧处理的曝气作用而形成气泡问题,负荷突然升高所带来的产气量突然增加也可能出现泡沫问题。碳酸钙(CaCO3)沉淀:处理废水钙含量高或利用石灰补充碱度,都会增加产生碳酸钙沉淀的可能性。高浓度的碳酸氢盐和磷酸盐都有利于钙的沉淀。鸟粪石(MgNH4PO4)沉淀:进水中含有较高浓度的溶解性正磷酸盐、氨氮和 镁离子时,就会生成鸟粪石沉淀。厌氧处理系统鸟粪石沉淀主要在管道弯头、水泵入口和二沉池进出口等处出现。2、厌氧生物处理的三个阶段是怎样的?理论研究认为三个阶段,即厌氧消化过程分为水解发酵阶段、产乙酸产氢阶段、产甲烷阶段三部分。

重庆定制芬顿流化床制造商

EGSB厌氧反应罐即膨胀颗粒污泥床反应器,是第三代厌氧反应器,构造特点是具有很大的高径比。从外观上看,EGSB反应器由第一厌氧反应室和第二厌氧反应室叠加而成,每个厌氧反应器的顶部各设一个气-固-液三相分离器。 EGSB厌氧反应罐的特点:容积负荷率高,水力停留时间短EGSB厌氧反应罐生物量大(可达到60g/L),污泥龄长。特别是由于存在着内、外循环,传质效果好。处理高浓度有机废水,进水容积负荷率可达15~30kgCOD/m3•d。EGSB厌氧反应罐应用于大型淀粉厂、酒精废水、生物制药厂、农药废水、造纸废水、化工废水处理系统。EGSB投资优势1、具有很高的容积负荷和高径比;2、节省基建投资和占地面积;3、没有运动部件操作简单,节省能耗;4、抗冲击负荷能力强,具有缓冲pH值的能力;5、出水稳定性好。如今EGSB反应器已被广泛应用与淀粉、酒精、啤酒、制药、造纸等行业,处理效果良好。

重庆定制芬顿流化床制造商

在相当长的一段时间内,厌氧消化在理论、技术和应用上远远落后于好氧生物处理的发展。20世纪60年代以来,世界能源短缺问题日益突出,这促使人们对厌氧消化工艺进行重新认识,对处理工艺和反应器结构的设计以及甲烷回收进行了大量研究,使得厌氧消化技术的理论和实践都有了很大进步,并得到广泛应用。 目前,厌氧微生物处理是高浓度有机废水处理工艺中不可或缺的处理工段,它较好氧微生物处理不仅能耗低,同时还可以产生沼气作为能源二次利用。厌氧反应容积负荷高较好氧反应高出很多,对于处理同等量的COD厌氧反应投资更低。在厌氧反应器的运行中,上升流速、水力停留时间和容积负荷等,那么这些数据都是如何计算的呢?今天我们就来讲一讲厌氧反应器日常运行中最常用的5个计算公式。1. 上升流速上升流速(Up flow Velocity)也叫表面速度(Superficial Velocity)或表面负荷(Superficial Loading Rate)。假定一个向上流动的反应器的进水流量(包括出水的循环)为Q(m3/h),反应器的横截面面积为A(m2),则上升流速u(m/h)可定义为:式中:u – 上升流速,单位米/小时Q - 反应器的进水流量,单位立方米/小时A - 反应器的横截面面积,单位平方米2. 水力停留时间水力停留时间(Hydrolic Retention Time)简写作HRT,它实际上指进入反应器的废水在反应器内的平均停留时间,因此,如果反应器的有效容积为V(m3),则式中:HRT – 水力停留时间V – 反应器容积,单位立方米Q - 反应器的进水流量,单位立方米/小时如果反应器高为H(m),则:因为Q=uA,V=HA所以HRT也可表示为如下公式,即水力停留时间等于反应器高度与上升流速之比。式中:HRT – 水力停留时间H - 反应器高度,单位米u -上升流速,单位米/小时3. 反应器的有机负荷反应器的有机负荷(Organic Loading Rate,简写作OLR)可“分为容积负荷(Volume Loading Rate,简写作VLR)和污泥负荷(Sludge Loading Rate,简写作SLR)两种表示方式。 VLR即表示单位反应器容积每日接受的废水中有机污染物的量,其单位为kgCOD/(m3d)或kgBOD/(m3d)。假定进水浓度为pw(kgCOD/m3或kgBOD/m3),流量为q(m3/d),则:式中:VLR – 容积负荷Q - 反应器的进水流量,单位立方米/小时Pw - 进水浓度, 单位kgCOD/m3V - 反应器容积,单位立方米

重庆定制芬顿流化床制造商

IC 反应器的构造及其工作原理决定了其在控制厌氧处理影响因素方面比其它反应器更具有优势。(1)容积负荷高:IC反应器内污泥浓度高,微生物量大,且存在内循环,传质效果好,进水有机负荷可超过普通厌氧反应器的3倍以上。(2)节省投资和占地面积:IC 反应器容积负荷率高出普通UASB 反应器3倍左右,其体积相当于普通反应器的1/4—1/3 左右,大大降低了反应器的基建投资;而且IC反应器高径比很大(一般为4—8),所以占地面积少。(3)抗冲击负荷能力强:处理低浓度废水(COD=2000—3000mg/L)时,反应器内循环流量可达进水量的2—3 倍;处理高浓度废水(COD=10000—15000mg/L)时,内循环流量可达进水量的10—20倍。大量的循环水和进水充分混合,使原水中的有害物质得到充分稀释,大大降低了毒物对厌氧消化过程的影响。(4)抗低温能力强:温度对厌氧消化的影响主要是对消化速率的影响。IC反应器由于含有大量的微生物,温度对厌氧消化的影响变得不再显著和严重。通常IC反应器厌氧消化可在常温条件(20—25 ℃)下进行,这样减少了消化保温的困难,节省了能量(5)具有缓冲pH值的能力:内循环流量相当于第1 厌氧区的出水回流,可利用COD转化的碱度,对pH值起缓冲作用,使反应器内pH值保持最佳状态,同时还可减少进水的投碱量。(6)内部自动循环,不必外加动力:普通厌氧反应器的回流是通过外部加压实现的,而IC 反应器以自身产生的沼气作为提升的动力来实现混合液内循环,不必设泵强制循环,节省了动力消耗。

标签